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Introduction

Introduction

One of the key decisions prior to initiating a research study using SEM is the choice of a
sample size for the study.
We’ve already seen how the wrong choice can lead to a high probability of failure in the
case of confirmatory factor analysis, because of a lack of convergence.
Besides issues of convergence, we also have the problems of power and precision, which
arise in all areas of statistics.
In this module, we’ll review several approaches to power, precision, and sample size
estimation in SEM, and conclude with some computational examples.
We’ll stick to the multivariate normal model with single samples, but many of the points
and techniques discussed here will generalize to other situations.
We’ll begin with classical hypothesis testing considerations, then move on the the more
modern confidence interval perspective.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why

Let’s begin by recalling some of the standard types of hypotheses that are tested in SEM.
1 Evaluating whether a model fits perfectly.
2 Evaluating whether it fits “signicantly worse than good.”
3 Evaluating whether it fits “significantly better than bad.”
4 Testing whether one model fits better than another model it is nested within.
5 Evaluating the badness of fit of a model with a point estimate and a confidence interval.
6 Estimating model parameters and establishing a confidence interval.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

The standard χ2 statistic tests for perfect model fit.
If fit is perfect, this statistic has an asymptotic chi-square distribution with p(p + 1)/2 − t
degrees of freedom, where p is the number of variables and t the number of (truly) free
parameters in the model.
This statistic is calculated in maximum likelihood estimation as

X = kFML (1)

where FML is the standard Maximum Wishart Likelihood discrepancy function, and k is a
scaling constant usually equal to n − 1.
Other scaling constants — in particular one proposed by Swain in the context of
covariance structure modeling and another by Bartlett in the context of factor analysis,
may be used to attempt to improve performance at small sample sizes.
Of course, if fit is not perfect in the population, then the test statistic will no longer have
a χ2 distribution.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

Strictly speaking, if the population covariance structure model does not fit the population
Σ perfectly, then the distribution of the test statistic diverges.
We might choose to measure how badly a model fits in the population by fitting the
model to the population Σ with the method of maximum likelihood and using the
“population discrepancy function” F ∗ as our measure of misfit.
Steiger, Shapiro, and Browne (1985) invoked a special assumption called “population
drift,” which imagines that the population parameters, rather than being stable, are
drifting along with sample size toward a point at which model fit is perfect.
This assumption models the situation in which fit is not too bad relative to sample size.
This assumption leads to a distributional result, i.e., that the asymptotic distribution of
the χ2 statistic is noncentral χ2, with noncentrality parameter given by

(n − 1)F ∗
ML (2)

in the standard case in which k = n − 1 is used as the multiplier.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

The noncentral χ2 approximation can furnish accurate estimates of the performance of
the likelihood ratio test statistic when the null hypothesis is false.
One employs the standard approach of first obtaining a rejection point from the central
chi-square distribution, then computing the probability in the rejection region under the
alternative hypothesis.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

Suppose you have a structural equation model based on p = 7 variables with t = 6 free
parameters. The population discrepancy function is 0.055. What is the power of the test
of perfect fit if α = 0.05, 1-sided and n = 185?
Using R, we first establish the critical value (rejection point).

> p <- 7

> t <- 6

> F.ML <- 0.055

> df <- p*(p+1)/2

> df

[1] 28

> critical.value <- qchisq(0.95,df)

> critical.value

[1] 41.33714
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

Now we compute the power.
First we calculate the noncentrality parameter.

> n <- 185

> lambda = (n-1)*F.ML

> lambda

[1] 10.12

Next we compute the power.

> power <- 1 - pchisq(critical.value,df,lambda)

> power

[1] 0.3443796

We find that the power is 0.344.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

Note how straightforward power calculation is. However, a key point was glossed over:
How does one estimate the population discrepancy function?
MacCallum, Browne, and Sugawara (1996) suggested using the RMSEA as a vehicle for
estimating an alternative value of the discrepancy function. Recall that, in the
population, the RMSEA is defined as

ε =

√
F ∗
ML

df
(3)

Consequently,
F ∗
ML = ε2 × df (4)

If one can specify a “non-trivial” RMSEA cut-off, one can use that to compute a
discrepancy function, and from that discrepancy function compute the noncentrality
parameter, followed by power.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing the Model for Perfect Fit

Suppose, for example, the minimal RMSEA is 0.08. You want to have a guaranteed level
of power to detect an RMSEA that small.
In the present example, this RMSEA would translate into a noncentrality parameter as
follows.

> epsilon <- 0.08

> F.ML <- epsilon^2 * df

> F.ML

[1] 0.1792

> lambda <- (n-1)*F.ML

> power <- 1 - pchisq(critical.value,df,lambda)

> power

[1] 0.9366569

We find that power to reject the hypothesis of perfect fit is 0.937 if the RMSEA is 0.08 in
the population.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Close Fit

In some cases, one may not wish to test that fit is perfect.
For example, MacCallum, Browne, and Sugawara(1996) discussed two other kinds of tests,
which they referred to as the test of close fit and the test of not-close fit, respectively.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Close Fit

The standard χ2 test of perfect fit is also a test of the hypothesis that the RMSEA is
equal to zero in the population.
The test of close fit assumes as its statistical null hypothesis not that the population
RMSEA is zero, but rather that it is less than or equal to some other reasonable value.
For example, suppose the null hypothesis is

H0 : ε ≤ 0.05 (5)

The alternative is
H0 : ε > 0.05 (6)
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Close Fit

This is a 1-sided test.
The rejection region begins at a critical value at the 1 − α quantile of the noncentral χ2

distribution.
Here is a sample problem. Suppose the test of close fit is performed as before with
n = 185, p = 7, and t = 6, and α = 0.05.
What is the power to reject H0 if the true population RMSEA is 0.08?
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Close Fit

First we calculate the null distribution and rejection point.
Although the null hypothesis specifies a region rather than a point, we can make our
point of calculation the boundary of that region, at ε = 0.05. Then power will be at least
as large as the calculated value.

> epsilon0 <- 0.05; epsilon1 <- 0.08; df <- p * (p+1) /2 - t

> alpha <- 0.05; n<-185

> F0 <- epsilon0^2 *df

> lambda0 <- (n-1) * F0

> critical.value <- qchisq(1-alpha, df, lambda0)

> F1 <- epsilon1^2 * df

> lambda1 <- (n-1) * F1

> power <- 1 - pchisq(critical.value,df,lambda1)

> power

[1] 0.4504781
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Not-Close Fit

The original χ2 test of perfect fit suffered from several problems:
1 It was unrealistic. The assumption of perfect fit is extremely unlikely to be correct.
2 It is an Accept-Support test. Supporting a proposed model requires not rejecting the null

hypothesis. Accept-Support testing suffers from a number of problems. In particular, it
rewards low power and sloppy experimentation.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Not-Close Fit

The test of close fit improves on the test of perfect fit, in that it tests a more reasonable
null hypothesis.
However, it is still an Accept-Support procedure, in that it requires not rejecting the null
hypothesis to support a model.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Not-Close Fit

The test of not-close fit takes a different approach.
The null hypothesis is now stated in the form

H0 : ε ≥ ε0 (7)

where ε0 is a value that represents “reasonably good fit.”
Since the alternative hypothesis is

H1 : ε < ε0 (8)

rejection of the null implies that “fit is significantly better than reasonably good.”
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing for Not-Close Fit

The test of not-close fit eliminates the problems associated with Accept-Support testing.
This test is easy to perform, and to calculate power for.
Suppose we wish to test the null hypothesis that ε ≥ 0.05, and the true state of the world
is that ε = 0.01.
In that case, the power will be as calculated below. Note that now the rejection region is
on the low side of the null hypothesized distribution.

> epsilon0 <- 0.05; epsilon1 <- 0.01

> F0 <- df * epsilon0^2

> lambda0 <- (n-1)*F0

> critical.value <- qchisq(0.05,df,lambda0)

> F1 <- df * epsilon1^2

> lambda1 <- (n-1)*F1

> power <- pchisq(critical.value,df,lambda1)

> power

[1] 0.3062439
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

So far, we have been discussing tests on an entire model.
Such tests can be useful, and power analysis for such tests is straightforward.
Another kind of test performed frequently in the context of structural equation modeling
is the test of significance on a parameter.
Two types of tests can be performed:

1 The χ2 difference test.
2 The Wald test.

In the χ2 difference test, two models are tested, with and without the path involving the
parameter of interest.
In the Wald test, the model is fit with the parameter of interest included, and an
asymptotically normal test statistic is computed by dividing the parameter by its
(estimated) standard error.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

A model without a path containing a parameter is nested within a model containing the
parameter.
Consequently, a result of Steiger, Shapiro, and Browne (1985) can be applied.
Under fairly general conditions, the difference between the chi-square tests for two nested
models is distributed as noncentral χ2 with degrees of freedom equal to the difference in
degrees of freedom for the two models (i.e., in this case 1), and a noncentrality parameter
equal to the difference in noncentrality parameters for the two models.
Consequently, one may estimate power to reject the null hypothesis for a single parameter
by a two step process:

1 Create the population covariance matrix corresponding to the model with the path
containing the parameter.

2 Fit this matrix to the model without the path containing the parameter, thereby obtaining a
non-zero population discrepancy function, and through it, a noncentrality parameter.

3 Use the non-central χ2 approximation to compute the power.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

Here is an example. Suppose that the following factor pattern fit the population
covariance matrix perfectly. Note there is one unanticipated “crossover loading” marked
in red.

Λ =



0.7 0.0 0.0
0.7 0.0 0.0
0.7 0.0 0.0
0.0 0.7 0.0
0.0 0.7 0.0
0.0 0.7 0.0
0.0 0.2 0.7
0.0 0.0 0.7
0.0 0.0 0.7


(9)
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

We generate the covariance matrix corresponding to Λ. First we construct Λ in R.

> Lambda <- matrix(c(rep(.7,3),rep(0,9),rep(0.7,3),

+ 0.2,rep(0,8),rep(.7,3)),9,3)

> Lambda

[,1] [,2] [,3]

[1,] 0.7 0.0 0.0

[2,] 0.7 0.0 0.0

[3,] 0.7 0.0 0.0

[4,] 0.0 0.7 0.0

[5,] 0.0 0.7 0.0

[6,] 0.0 0.7 0.0

[7,] 0.0 0.2 0.7

[8,] 0.0 0.0 0.7

[9,] 0.0 0.0 0.7
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

Next, we apply one of the utility functions.

> MakeFactorCorrelationMatrix <- function(F){

+ r <-F %*% t(F)

+ h <- diag(r)

+ u <- diag(1 - h)

+ r <- r+u

+ r

+ }

> R <- MakeFactorCorrelationMatrix(Lambda)

> R

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.00 0.49 0.49 0.00 0.00 0.00 0.00 0.00 0.00

[2,] 0.49 1.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00

[3,] 0.49 0.49 1.00 0.00 0.00 0.00 0.00 0.00 0.00

[4,] 0.00 0.00 0.00 1.00 0.49 0.49 0.14 0.00 0.00

[5,] 0.00 0.00 0.00 0.49 1.00 0.49 0.14 0.00 0.00

[6,] 0.00 0.00 0.00 0.49 0.49 1.00 0.14 0.00 0.00

[7,] 0.00 0.00 0.00 0.14 0.14 0.14 1.00 0.49 0.49

[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.49 1.00 0.49

[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.49 1.00
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

We can save the correlation matrix to a text file for analysis by Mplus.

> Rout <- data.frame(R)

> write.table(Rout,"PowerCov.dat",row.names=FALSE,

+ col.names=FALSE,sep=" ")
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

Next we analyze the data with Mplus, leaving out the path corresponding to the crossover
loading.

TITLE: SETUP ANALYSIS FOR POWER CALCULATION;

DATA: FILE IS PowerCov.dat;

TYPE IS FULLCOV;

NOBSERVATIONS = 1000000;

VARIABLE: NAMES ARE Y1-Y9;

MODEL: F1 BY Y1-Y3*;

F2 BY Y4-Y6*;

F3 BY Y7-Y9*;

F1-F3@1;
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

This produces the following test statistic output:

Chi-Square Test of Model Fit

Value 39570.991

Degrees of Freedom 24

P-Value 0.0000

With a “pretend” sample size of 106, the discrepancy function calculates to about
0.03957.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

Suppose sample size was actually 250 with this population matrix.
Then the population noncentrality parameter would be

> F <- 0.03957

> Lambda = (250-1) * F

> Lambda

[1] 9.85293

> epsilon = sqrt(F/24)

> epsilon

[1] 0.0406048

The difference test has one degree of freedom, and we estimate the power as

> critical.value <- qchisq(0.95,1)

> power <- 1 - pchisq(critical.value, 1, Lambda)

> power

[1] 0.8807959

Power is about 0.88.
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Hypothesis Testing and Fit Evaluation: What, Where, How, and Why
Testing Individual Parameters

On the other hand, the test of perfect model fit has 24 degrees of freedom, so the power
to reject perfect model fit is lower.

> critical.value <- qchisq(0.95,24)

> power <- 1 - pchisq(critical.value, 24, Lambda)

> power

[1] 0.3614827

Power for this test is estimated to be only 0.361
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Power Charts for Tests of Overall Model Fit

Constructing a power chart, displaying power as a function of sample size or some other
quantity, is really straightforward in R.
Let’s begin by constructing a power function, that returns estimated power as a function
of α, ε0, ε1, df , and n.
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Power Charts for Tests of Overall Model Fit

> ## Calculate power as a function of

> ## n Sample Size

> ## epsilon1 The true population RMSEA

> ## epsilon0 The null RMSEA (0 for a test of perfect fit)

> ## alpha Type I Error Rate

> ## tail "lower" or "upper" (Where the rejection region is)

> SEMpower <- function(n,df,epsilon1,epsilon0=0,alpha=0.05,tail="upper"){

+ lambda0 <- (n-1)*df*epsilon0^2

+ lambda1 <- (n-1)*df*epsilon1^2

+ critical.p <- if(tail == "upper") 1-alpha else alpha

+ critical.value <- qchisq(critical.p,df,lambda0)

+ critical.prob <- pchisq(critical.value,df,lambda1)

+ power <- if (tail == "upper") 1-critical.prob else critical.prob

+ return(power)

+ }
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Power Charts for Tests of Overall Model Fit

Let’s try out our function on the example we just worked.
In that example, we had a population discrepancy function of F = 0.03957, which,
combined with 24 degrees of freedom, translates into a population RMSEA of

ε =

√
0.03957

24
= 0.0406048 (10)

For a test of perfect fit, ε0 = 0.
We can calculate power (using the default upper tail and α = 0.05) as

> SEMpower(250,24,sqrt(0.03957/24))

[1] 0.3614827
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Power Charts for Tests of Overall Model Fit

We can now display a power chart showing power as a function of n for this situation.

> curve(SEMpower(x,24,0.0406),100,1000,col="red",

+ xlab="Sample Size (n)",

+ ylab="Power")
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Power Charts for Tests of Overall Model Fit

The SEMpower function can be adapted to handle situations in which a test of close-fit,
or a test of not-close fit is being performed.
It can also be used to estimate the sample size required to achieve a guaranteed level of
power under specified conditions, as shown in the next section.
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Sample Size Calculations for Tests of Model Fit

In the just-completed analysis, we found of power of 0.36, certainly not adequate.
The question immediately arises: What would sample size n have to be to yield an
acceptable level of power?
In this situation, there is no direct analytic solution to the required sample size. The
solution can be approximated reasonably well, or calculated precisely by iterative methods.
The method of bisection works quite well in this case, and is extraordinarily simple.
The calculation is hampered slightly by the fact that, in the final analysis, n must be an
integer.
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Sample Size Calculations for Tests of Model Fit

A function calculating required sample size is a good one to have, and we’ll develop one
eventually.
However, for one specific situation, one doesn’t need to go to this trouble.
Instead, we use a simple graphical approach.
Remember this approach well, as you may find it useful in the future. It is, in general,
much easier to construct a power calculation function than it is to construct a sample size
calculating function!
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Sample Size Calculations for Tests of Model Fit

What sample size would be required to guarantee a power of 0.90? Looking at the
previously generated graph, we can begin by adding a horizontal line at 0.90.
Simple inspection tells us that the required n is between 650 and 750.

> curve(SEMpower(x,24,0.0406),100,1000,col="red",

+ xlab="Sample Size (n)",

+ ylab="Power")

> abline(h = 0.90, col="blue")
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Sample Size Calculations for Tests of Model Fit

We redraw the graph with narrower limits of 650 and 750.
We add gridlines in grey to help us.
We can see that the required n is clearly between 705 and 710, and is almost certainly
either 707 or 708.

> curve(SEMpower(x,24,0.0406),650,750,col="red",

+ xlab="Sample Size (n)",

+ ylab="Power")

> abline(h = 0.90, col="blue")

> abline(v = seq(650,750,10), col="grey")
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We home in one more time and nail down the correct answer.

> curve(SEMpower(x,24,0.0406),705,710,col="red",

+ xlab="Sample Size (n)",

+ ylab="Power")

> abline(h = 0.90, col="blue")

> abline(v = 705:710, col="grey")
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Note that the correct answer is not an integer! The convention is to pick the next highest
integer, which is the lowest integer n for which power is greater than or equal to 0.90. We
choose n = 708.

James H. Steiger (Vanderbilt University) Power, Precision, and Sample Size Calculations 39 / 49



Sample Size Calculations for Tests of Model Fit Sample Size Tables

Sample Size Calculations for Tests of Model Fit
Sample Size Tables

Using an iterative algorithm, it is easy to construct tables or charts of sample sizes
required to achieve a given level of power.
Here are some examples from MacCallum, Browne, and Sugawara (1996).
What are some “take home” messages from the tables? (C.P.)
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Table 5
Minimum Sample Sizes for Test of Exact Fit for
Selected Levels of Degrees of Freedom (df) and
Power

df

2
4
6
8
10
12
14
16
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Minimum N
for power = 0.80

1,926
1,194
910
754
651
579
525
483
449
421
368
329
300
277
258
243
230
218
209
200
193
186
179
174
168
164

Minimum N
for power = 0.50

994
644
502
422
369
332
304
280
262
247
218
196
180
167
157
148
140
134
128
123
119
115
111
108
105
102

Note. The a = .05, e,, = 0.0, and ea = 0.05, where e,, is the
null value of the root-mean-square error of approximation
(RMSEA) and e, is the alternative value of RMSEA.

An additional phenomenon of interest shown
by the results in Table 4 is that the Nmm values for
the two cases cross over as d increases. At low
values of d, Nmm for the test of close fit is larger
than Nmin for the test of not-close fit. For d > 14,
the relationship is reversed. This phenomenon is
attributable to the interactive effect of effect size
and d on power. The effect size represented by
the test of close fit (e0 = 0.05 and ea = 0.08) is an
effectively larger effect size than that for the test
of not-close fit (EO = 0.05 and sa = 0.01) at higher
levels of d but is effectively smaller at lower levels
old.

Let us finally consider determination of Nmm for
a third case of interest, the test of exact fit when

ea = 0.05. Using a = .05, Table 5 shows values of
yVmin for selected levels of d, for two levels of de-
sired power, 0.80 and 0.50. These results provide
explicit information about the commonly recog-
nized problem with the test of exact fit. Levels of
Nmm for power of 0.80 reflect sample sizes that
would result in a high likelihood of rejecting the
hypothesis of exact fit when true fit is close. Corre-
sponding levels of yVmin for power of 0.50 reflect
sample sizes that would result in a better than 50%
chance of the same outcome. For instance, with
d = 50 and N > 243, the likelihood of rejecting
the hypothesis of exact fit would be at least .80,
even though the true fit is close. Under the same
conditions, power would be greater than 0.50 with
N > 148. As d increases, the levels of N that pro-
duce such outcomes become much smaller. These
results provide a clear basis for recommending
against the use of the test of exact fit for evaluating
covariance structure models. Our results show
clearly that use of this test would routinely result
in rejection of close-fitting models in studies with
moderate to large sample sizes. Furthermore, it is
possible to specify and test hypotheses about
model fit that are much more empirically relevant
and realistic, as has been described earlier in
this article.

For the five empirical studies discussed earlier
in this article, Table 3 shows values of /Vmin for
achieving power of 0.80 for the tests of close fit
and not-close fit. These results are consistent with
the phenomena discussed earlier in this section.
Most important is the fact that rigorous evaluation
of fit for models with low d, such as those studied
by Meyer and Gellatly (1988) and Vance and Col-
ella (1990), requires extremely large N. Such mod-
els are not rare in the literature. Our results indi-
cate that model evaluation in such cases is highly
problematic and probably should not be under-
taken unless very large samples are available.

Comparison to Other Methods for
Power Analysis in CSM

As mentioned earlier, there exists previous liter-
ature on power analysis in CSM. Satorra and Saris
(1983, 1985; Saris & Satorra, 1993) have proposed
a number of techniques for evaluating power of the
test of exact fit for a specific model. The methods
presented in this earlier work are based on the
same assumptions and distributional approxima-
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Table 4
Minimum Sample Size to Achieve Power of 0.80 for
Selected Levels of Degrees of Freedom (df)

df
Minimum N for test

of close fit
Minimum N for test

of not-close fit

2
4
6
8
10
12
14
16
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

3,488
1,807
1,238
954
782
666
585
522
472
435
363
314
279
252
231
214
200
187
177
168
161
154
147
142
136
132

2,382
1,426
1,069
875
750
663
598
547
508
474
411
366
333
307
286
268
253
240
229
219
210
202
195
189
183
178

Note. For all analyses, a = .05. For the test of close fit. e,, =
0.05 and ea = 0.08, where e0 is the null value of the root-
mean-square error of approximation (RMSEA) and ea is the
alternative value of RMSEA. For the test of not-close fit, e (>
= 0.05 and ea = 0.01.

in d causes substantial reduction in power of
model tests.

Let us next focus on levels of necessary N as d
becomes larger. As is indicated in Table 4, ade-
quate power for the recommended tests can be
achieved with relatively moderate levels of N when
d is not small. For instance, with d = 100, a power
of 0.80 for the test of close fit (in comparison with
the alternative that ea = 0.08) is achieved with
N = 132. Again, such results reflect the behavior
of CIs for e. With large d, relatively narrow CIs are
obtained with only moderate N. This phenomenon
has important implications for tests of model fit
using hypotheses about e. For instance, using the

test of close fit, if d is large and actual fit is medio-
cre or worse, one does not need a very large sample
to have a high probability of rejecting the false
null hypothesis. Consider a specific example to
illustrate this point. Suppose one has p = 30 mani-
fest variables, in which case there would be
p(p + l)/2 = 465 distinct elements in the
p X p covariance matrix. If we tested the null
model that the measured variables are uncorre-
lated, the model would have q = 30 parameters
(variances of the manifest variables), resulting in
d = p(p + 1)12 ~ q = 435. For the test of close
fit, in comparison with the alternative that ea =
0.08, we would find Nmm = 53 for power of 0.80.
That is, we would not need a large sample to reject
the hypothesis that a model specifying uncorre-
lated measured variables holds closely in the popu-
lation. In general, our results indicate that if d is
high, adequately powerful tests of fit can be carried
out on models with moderate N.

This finding must be applied cautiously in prac-
tice. Some applications of CSM may involve mod-
els with extremely large d. For instance, factor
analytic studies of test items can result in models
with d > 2000 when the number of items is as high
as 70 or more. For a model with d = 2000, a power
of 0.80 for the test of close fit (in comparison with
the alternative that ea = 0.08) can be achieved
with Nmm = 23 according to the procedures we
have described. Such a statement is not meaningful
in practice for at least two reasons. First, one must
have N > p to conduct parameter estimation using
the common ML method. Second, and more im-
portant, our framework for power analysis is based
on asymptotic distribution theory, which holds
only with sufficiently large N. The noncentral x1

distributions on which power and sample size cal-
culations are based probably do not hold their
form well as N becomes small, resulting in inaccu-
rate estimates of power and minimum N. There-
fore, results that indicate a small value of Nmm

should be treated with caution. Finally, it must
also be recognized that we are considering deter-
mination of 7Vmin only for the purpose of model
testing. The magnitude of N affects other aspects
of CSM results, and an N that is adequate for one
purpose might not be adequate for other purposes.
For example, whereas a moderate N might be ade-
quate for achieving a specified level of power for
a test of overall fit, the same level of N may not
necessarily be adequate for obtaining precise pa-
rameter estimates.

James H. Steiger (Vanderbilt University) Power, Precision, and Sample Size Calculations 42 / 49



Interval Estimation Approaches

Interval Estimation Approaches

An alternative to a hypothesis-testing framework is based on confidence interval
estimation.
One can perform all the standard hypothesis tests discussed above simply by constructing
a confidence interval on the RMSEA.
Since the tests are one-sided, one constructs a 1 − 2α confidence interval and examines it
to see if the confidence interval excludes the critical value of the RMSEA.
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Constructing a confidence interval on the RMSEA requires an iterative proceudre.
The method is discussed in detail in the article by Steiger and Fouladi (1997) available on
my website in the Publications section.
Briefly — One solves inversely for those values of λ that would place the observed data at
the 95th and 5th percentile of the non-central chi-square distribution. These values are
the endpoints of a 90% confidence interval for λ, which may be converted into a
confidence interval for the RMSEA ε.
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Suppose, for example, one calculates the 90% CI for ε, and it has endpoints 0 and 0.0491.
Could one reject the hypothesis of perfect fit? How about the hypothesis of close fit, with
H0 ε ≤ 0.05?
Could one reject the hypothesis of not-close fit, if H0 is

H0 : ε ≥ 0.05 (11)
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Suppose the confidence interval on the RMSEA has endpoints of 0.0471 and 0.0752.
Could one reject the hypothesis of perfect fit?
Could one reject the hypothesis of close fit?
Could one reject the hypothesis of not-close fit?
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Interval Estimation Approaches
Changing the Emphasis – AIPE

In the preceding section, we examined several types of hypothesis tests that can be
performed simultaneously with a confidence interval.
Only one of the hypothesis tests — the test of not-close fit — involves a Reject-Support
strategy.
The original sample size table from MacCallum, Browne, and Sugawara (1996) involves a
null hypothesis that ε ≥ 0.05. Power is calculated under the very stringent alternative
hypothesis that ε = 0.01.
Clearly, to get a rejection using this strategy requires a narrow confidence interval,
because the interval has to fit between 0 and 0.05 in order for a rejection to occur!
If your confidence interval is wider than 0.05, this can never happen!
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Changing the Emphasis – AIPE

As sample size increases, the average width of a confidence interval for ε generally
decreases.
The expected value of the width of a confidence interval is a complex function of the
sample size and the RMSEA itself.
However, one can estimate the sample size required to produce a “narrow-enough”
confidence interval for the RMSEA under a reasonable set of assumptions.
This approach of calculating sample size in terms of the expected width of a confidence
interval has been called AIPE (Accuracy in Parameter Estimation) by Ken Kelley of Notre
Dame, who has a number of interesting articles on the topic.
Some of these techniques are implemented in his MBESS package for R. MBESS also
implements confidence interval calculation for the RMSEA.
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Interval Estimation Approaches
Changing the Emphasis – AIPE

Here is an example (the package is currently broken )

> ##library(MBESS)

> ##ss.aipe.rmsea(0.03,24,0.08,0.9)
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